Ans.(i)30°
The below given steps will be followed to construct an angle of 30°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.
Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S.
(1) Take the given ray PQ. Draw an arc of some radius, taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(5) Join PU. Let it intersect the arc at point V.
The below given steps will be followed to construct an angle of 15°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.
Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S.
Construct the following angles and verify by measuring them by a protractor:
(i) 75° (ii) 105° (iii) 135°
Ans.(i) 75°
The below given steps will be followed to construct an angle of 75°.
(1) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(5) Join PU. Let it intersect the arc at V. Taking S and V as centre, draw arcs with radius more than

SV. Let those intersect each other at W. Join PW which is the required ray making 75° with the given ray PQ.
The angle so formed can be measured with the help of a protractor. It comes to be 75º.
(ii) 105°
The below given steps will be followed to construct an angle of 105°.
(1) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(5) Join PU. Let it intersect the arc at V. Taking T and V as centre, draw arcs with radius more than

TV. Let these arcs intersect each other at W. Join PW which is the required ray making 105° with the given ray PQ.
The angle so formed can be measured with the help of a protractor. It comes to be 105º.
(iii) 135°
The below given steps will be followed to construct an angle of 135°.
(1) Take the given ray PQ. Extend PQ on the opposite side of Q. Draw a semi-circle of some radius taking point P as its centre, which intersects PQ at R and W.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(5) Join PU. Let it intersect the arc at V. Taking V and W as centre and with radius more than

VW, draw arcs to intersect each other at X. Join PX, which is the required ray making 135°with the given line PQ.
The angle so formed can be measured with the help of a protractor. It comes to be 135º.
Question 5:
Construct an equilateral triangle, given its side and justify the construction
Ans.Let us draw an equilateral triangle of side 5 cm. We know that all sides of an equilateral triangle are equal. Therefore, all sides of the equilateral triangle will be 5 cm. We also know that each angle of an equilateral triangle is 60º.
The below given steps will be followed to draw an equilateral triangle of 5 cm side.
Step I: Draw a line segment AB of 5 cm length. Draw an arc of some radius, while taking A as its centre. Let it intersect AB at P.
Step II: Taking P as centre, draw an arc to intersect the previous arc at E. Join AE.
Step III: Taking A as centre, draw an arc of 5 cm radius, which intersects extended line segment AE at C. Join AC and BC. ΔABC is the required equilateral triangle of side 5 cm.
Justification of Construction:
We can justify the construction by showing ABC as an equilateral triangle i.e., AB = BC = AC = 5 cm and ∠A = ∠B = ∠C = 60°.
In ΔABC, we have AC = AB = 5 cm and ∠A = 60°.
Since AC = AB,
∠B = ∠C (Angles opposite to equal sides of a triangle)
In ΔABC,
∠A + ∠B + ∠C = 180° (Angle sum property of a triangle)
⇒ 60° + ∠C + ∠C = 180°
⇒ 60° + 2 ∠C = 180°
⇒ 2 ∠C = 180° − 60° = 120°
⇒ ∠C = 60°
∴ ∠B = ∠C = 60°
We have, ∠A = ∠B = ∠C = 60° ... (1)
⇒ ∠A = ∠B and ∠A = ∠C
⇒ BC = AC and BC = AB (Sides opposite to equal angles of a triangle)
⇒ AB = BC = AC = 5 cm ... (2)
From equations (1) and (2), ΔABC is an equilateral triangle.